Calmness for Closed Multifunctions over Constraint Sets in Banach Spaces
نویسندگان
چکیده
منابع مشابه
Calmness for L-Subsmooth Multifunctions in Banach Spaces
Using variational analysis techniques, we study subsmooth multifunctions in Banach spaces. In terms of the normal cones and coderivatives, we provide some characterizations for such multifunctions to be calm. Sharper results are obtained for Asplund spaces. We also present some exact formulas of the modulus of the calmness. As applications, we provide some error bound results on nonconvex inequ...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملfunctionally closed sets and functionally convex sets in real banach spaces
let $x$ be a real normed space, then $c(subseteq x)$ is functionally convex (briefly, $f$-convex), if $t(c)subseteq bbb r $ is convex for all bounded linear transformations $tin b(x,r)$; and $k(subseteq x)$ is functionally closed (briefly, $f$-closed), if $t(k)subseteq bbb r $ is closed for all bounded linear transformations $tin b(x,r)$. we improve the krein-milman theorem ...
متن کاملRandom Fixed Point Theorems for Measurable Multifunctions in Banach Spaces
In this paper we prove several random fixed point theorems for measurable closed and nonclosed valued multifunctions satisfying general continuity conditions. Our work extends and sharpens earlier results by Engl, Itoh and Reich. 1. Preliminaries and definitions. The study of random fixed points was initiated by the Prague school of probabilists in the fifties. Recently the interest on this sub...
متن کاملThe Fermat rule for multifunctions on Banach spaces
Using variational analysis, we study vector optimization problems with objectives being closed multifunctions on Banach spaces or in Asplund spaces. In particular, in terms of the coderivatives, we present Fermat’s rules as necessary conditions for an optimal solution of the above problems. As applications, we also provide some necessary conditions (in terms of Clarke’s normal cones or the limi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics Research
سال: 2015
ISSN: 1916-9809,1916-9795
DOI: 10.5539/jmr.v7n3p16